
calphy

Sarath Menon

Sep 01, 2022

CONTENTS

1 Documentation 3
1.1 Installation . 3
1.2 Documentation . 6

2 Examples 29
2.1 Examples . 29

3 API reference 45
3.1 calphy package . 45

4 Indices and tables 47

i

ii

calphy

calphy(pronounced cal-phee) is a Python library and command line tool for calculation of free energies. It uses
LAMMPS as the molecular dynamics driver to enable calculation of free energies using thermodynamic integration in
a completely automated and efficient manner. The various methods that calphy can perform are:

• 𝐹 (𝑉𝑖, 𝑇𝑖) and 𝐺(𝑃𝑖, 𝑇𝑖) for both solid and liquid phases at the given thermodynamic conditions using non-
equilibrium Hamiltonian interpolation.

• 𝐹 (𝑇𝑖 → 𝑇𝑓) and 𝐺(𝑇𝑖 → 𝑇𝑓), temperature dependence of Gibbs and Helmholtz free energies using the re-
versible scaling approach.

• Calculation of solid-solid or solid-liquid phase transition temperatures.

• Calculation of coexistence lines using dynamic Clausius-Clapeyron integration.

• Calculation of specific heat 𝑐𝑃 (𝑇) as a function of temperature.

• Calculation of 𝐹 (𝑥, 𝑇) and 𝐺(𝑥, 𝑇) for multicomponent systems using alchemical transformations.

• Upsampling calculations.

Calphy works with all interatomic potentials implemented in LAMMPS and can obtain reliable results with low error
bars in as low as 50 ps of simulation time with less than 3000 atoms. More information about the methods in calphy
can be found in the associated publication.

CONTENTS 1

https://www.lammps.org/
https://linkinghub.elsevier.com/retrieve/pii/S0927025615007089
https://linkinghub.elsevier.com/retrieve/pii/S0927025615007089
https://link.aps.org/doi/10.1103/PhysRevLett.83.3973
https://link.aps.org/doi/10.1103/PhysRevLett.83.3973
http://aip.scitation.org/doi/10.1063/1.1420486
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.103801
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.103801
https://docs.lammps.org/pairs.html
https://journals.aps.org/prmaterials/abstract/10.1103/PhysRevMaterials.5.103801

calphy

2 CONTENTS

CHAPTER

ONE

DOCUMENTATION

1.1 Installation

1.1.1 Supported operating systems

calphy can be installed on Linux and Mac OS based systems. On Windows systems, it is recommended to use Windows
subsystem for Linux.

1.1.2 Installation using Conda

calphy can be installed directly using Conda from the conda-forge channel by the following statement:

conda install -c conda-forge calphy

1.1.3 Installation from the repository

calphy can be built from the repository by-

git clone https://github.com/ICAMS/calphy.git
cd calphy
python setup.py install --user

Please note that the list of dependencies mentioned below has to installed manually by the user.

1.1.4 Using a conda environment

It is strongly recommended to install and use calphy within a conda environment. To see how you can install conda
see here.

Once a conda distribution is available, the following steps will help set up an environment to use calphy. First step is
to clone the repository.

git clone https://github.com/ICAMS/calphy.git

After cloning, an environment can be created from the included file-

cd calphy
conda env create -f environment.yml

3

https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.microsoft.com/en-us/windows/wsl/install
https://docs.conda.io/en/latest/
https://conda-forge.org/
https://docs.conda.io/projects/conda/en/latest/user-guide/install/

calphy

Note that the conda-forge distribution of LAMMPS will be automatically installed. Alternatively, you can use an
existing version of LAMMPS (compiled as library). If a LAMMPS distribution need not be installed, use the calphy/
environment-nolammps.yml file instead to create the environment. This will install the necessary packages and
create an environment called calphy. It can be activated by,

conda activate calphy

then, install calphy using,

python setup.py install

The environment is now set up to run calphy.

1.1.5 Dependencies

• lammps conda install -c conda-forge lammps

• mendeleev >=0.7.0 pip install mendeleev

• pylammpsmpi >=0.0.8 pip install pylammpsmpi

• pyscal >=2.10.14 pip install git+https://github.com/srmnitc/pyscal

• pyyaml >=5.4.1 pip install pyyaml

• scipy >=1.7.0 pip install scipy

• tqdm >=4.61.2 pip install tqdm

Optional

• matplotlib >=3.4.2 pip install matplotlib

• pytest >=6.2.4 pip install pytest

1.1.6 About LAMMPS for calphy

calphy uses LAMMPS as the driver for molecular dynamics simulations. For calphy to work, LAMMPS needs to be
compiled as a library along with the Python interface. The easiest way to do this is to install LAMMPS through the
conda-forge channel using:

conda install -c conda-forge lammps

Alternatively, when interatomic potentials with special compilation needs are to be used, LAMMPS (Stable release 29
Sept 2021 and above) can be compiled manually using the following set of instructions.

In order to help with installing all the prerequisites, an environment file which does not include the LAMMPS distribu-
tion is also provided. This is only required if you want use a conda environment. This environment can be installed
using:

cd calphy
conda env create -f environment-nolammps.yml

Activate the environment using:

4 Chapter 1. Documentation

calphy

conda activate calphy2

Obtain the stable version from here and extract the archive. From the extracted archive, the following steps, used in the
conda-forge recipe can be run:

mkdir build_lib
cd build_lib
cmake -D BUILD_LIB=ON -D BUILD_SHARED_LIBS=ON -D BUILD_MPI=ON -D PKG_MPIIO=ON -D LAMMPS_
→˓EXCEPTIONS=yes -D PKG_MANYBODY=ON -D PKG_MISC=ON -D PKG_MISC=ON -D PKG_EXTRA-
→˓COMPUTE=ON -D PKG_EXTRA-DUMP=ON -D PKG_EXTRA-FIX=ON -D PKG_EXTRA-PAIR=ON ../cmake
make
cp liblammps${SHLIB_EXT}* ../src
cd ../src
make install-python
mkdir -p $PREFIX/include/lammps
cp library.h $PREFIX/include/lammps
cp liblammps${SHLIB_EXT}* "${PREFIX}"/lib/
cd ..

(Optional) The above commands only builds the MANYBODY package. To use some of the other potentials, the
following commands could be added to the cmake call.

• -D PKG_ML-PACE=ON for performant Atomic Cluster Expansion potential (from October 2021 version).

• -D PKG_ML-SNAP=ONfor SNAP potential.

• -D PKG_MEAM=ON for MEAM potential.

• -D PKG_KIM=ON for KIM support.

Install the python wrapper:

cd ../src
make install-python

In the case of a conda environment, the following commands can be used to copy the compiled libraries to an acces-
sible path (sometimes PREFIX needs to be used instead of CONDA_PREFIX):

mkdir -p $CONDA_PREFIX/include/lammps
cp library.h $CONDA_PREFIX/include/lammps
cp liblammps${SHLIB_EXT}* $CONDA_PREFIX/lib/

Once LAMMPS is compiled and the libraries are available in an accessible location, the following commands can be
used within python to test the installation:

from lammps import lammps
lmp = lammps()

Now, we install pylammpsmpi using,

pip install pylammpsmpi

And finally calphy:

cd calphy
python setup.py install --user

1.1. Installation 5

https://github.com/lammps/lammps/archive/refs/tags/stable_29Sep2021.tar.gz
https://github.com/conda-forge/lammps-feedstock/blob/master/recipe/build.sh
https://docs.lammps.org/Packages_details.html#pkg-manybody
https://docs.lammps.org/Packages_details.html#pkg-ml-pace
https://github.com/lammps/lammps/releases/tag/patch_27Oct2021
https://docs.lammps.org/Packages_details.html#pkg-ml-snap
https://docs.lammps.org/Packages_details.html#meam-package
https://docs.lammps.org/Packages_details.html#pkg-kim

calphy

1.2 Documentation

1.2.1 calphy input file

The inputfile is yaml formatted. In this section the possible keys in the inputfile is discussed. The input file consists of
two main keys, and four separate blocks. For a sample of the inputfile see the end of this document. The table below
gives a quick overview of all available keywords in calphy.

Main keys

Main keys

element mass

calculations

calculations block

mode lattice reference_phase temperature pressure
temperature_high lattice_constant repeat n_iterations n_switching_steps
n_equilibration_steps pair_style pair_coeff n_print_steps potential_file
spring_constants equilibration_control melting_cycle folder_prefix

md

md block

timestep n_small_steps n_every_steps n_repeat_steps n_cycles
thermostat_damping barostat_damping

queue

queue block

scheduler cores jobname walltime queuename
memory commands modules options

6 Chapter 1. Documentation

calphy

tolerance

tolerance block

lattice_constant spring_constant solid_fraction liquid_fraction pressure

melting_temperature

melting_temperature block

step attempts

composition_scaling

composition_scaling block

input_chemical_composition output_chemical_composition

nose_hoover

nose_hoover block

thermostat_damping barostat_damping

berendsen

berendsen block

thermostat_damping barostat_damping

main keys

(element)=
`element`

(continues on next page)

1.2. Documentation 7

calphy

(continued from previous page)

type: string/list of strings
default: None
example:
```
element: 'Cu'
element: ['Cu', 'Zr']
```
Chemical symbol(s) of the element(s) in the simulation.

`mass`

type: float/list of floats
default: 1.0
example:
```
mass: 63.546
mass: [63.546, 91.224]
```

Mass of the element(s) in the simulation. It should follow the same order as that of␣
→˓`element`, and should be of the same length.

`calculations` block

Other than these two main keys, all other options are specified in blocks. The first␣
→˓block is the `calculations` block. This block can list all the calculations that␣
→˓`calphy` should perform and it can have more than one entry. A sample calculation␣
→˓block is shown below.

```
calculations:
- mode: ts
temperature: [1300, 1400]
pressure: [0]
lattice: [FCC]
repeat: [2, 2, 2]
reference_phase: solid
n_iterations: 1

```

The various keys are-

`mode`

(continues on next page)

8 Chapter 1. Documentation

calphy

(continued from previous page)

type: string, `fe` or `ts` or `mts` or `alchemy` or `melting_temperature` or `tscale`␣
→˓or `pscale`
default: None
example:
```
mode: fe
mode: ts
```

Calculation mode. A small description of the different modes are given below.
- `fe` performs a direct free energy calculation
- `ts` performs a direct free energy calculation followed by reversible scaling to find␣
→˓temperature dependence.
- `mts` performs only reversible scaling part and can be used for dynamic Clausius-
→˓Clapeyron integration.
- `alchemy` is used for switching between two different interatomic potentials, or for␣
→˓integration over concentration.
- `melting_temperature` can be used for automated calculation of melting temperature.
- `tscale` is used for similar purpose as `ts`, but scales the temperature directly.
- `pscale` calculates the free energy as a function of the pressure.

`temperature`

type: float or list of floats
default: None
example:
```
temperature: 1200
temperature: [1200, 1300]
```

Temperatures for the simulation in Kelvin. The way temperature is used in `calphy`␣
→˓depends on the selected mode of calculation.
- mode `ts` or `tscale` or `mts`, a temperature sweep is carried out. In that case, only␣
→˓two values of temperature should be specified.
- mode `melting_temperature`, if provided it is used as an initial guess temperature. If␣
→˓not, the experimental melting temperature is used as a guess value.
- all other modes, a calculation is launched for each temperature on the list.

`pressure`

type: None or float or list of floats
default: None
example:
```
pressure: None
pressure: 0
pressure: [0,0,0]

(continues on next page)

1.2. Documentation 9



calphy

(continued from previous page)

pressure: [0, 10000]
pressure: [[1,1,1], [1000, 1000, 1000]]
```

Pressure for the simulation in bars. Depending on the pressure input, other options are␣
→˓automatically set. These options are `iso` and `fix_lattice`. `iso` decides if the␣
→˓barostat relaxes the system isotropically or anisotropically. `fix_lattice` does not␣
→˓relax the lattice at all. A table consistning of possible pressure input options and␣
→˓their effect is below:

<table border="1" class="docutils">
<thead>
<tr>
<th style="text-align: center;"><code>pressure</code> input options</th>
<th style="text-align: center;"></th>
<th style="text-align: center;"></th>
<th style="text-align: center;"></th>
<th style="text-align: center;"></th>
<th style="text-align: center;"></th>
</tr>
</thead>
<tbody>
<tr>
<td style="text-align: center;">Type</td>
<td style="text-align: center;">Example</td>
<td style="text-align: center;"><code>iso</code></td>
<td style="text-align: center;"><code>fix_lattice</code></td>
<td style="text-align: center;"><code>mode</code></td>
<td style="text-align: center;">Restrictions</td>
</tr>
<tr>
<td style="text-align: center;"><code>None</code></td>
<td style="text-align: center;"><code>pressure: None</code></td>
<td style="text-align: center;">True</td>
<td style="text-align: center;">True</td>
<td style="text-align: center;"><code>fe</code>, <code>alchemy</code></td>
<td style="text-align: center;">None</td>
</tr>
<tr>
<td style="text-align: center;">scalar</td>
<td style="text-align: center;"><code>pressure: 100</code></td>
<td style="text-align: center;">True</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">all except <code>pscale</code></td>
<td style="text-align: center;">None</td>
</tr>
<tr>
<td style="text-align: center;"><code>(1,)</code></td>
<td style="text-align: center;"><code>pressure: [100]</code></td>
<td style="text-align: center;">True</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">all except <code>pscale</code></td>

(continues on next page)

10 Chapter 1. Documentation

calphy

(continued from previous page)

<td style="text-align: center;">None</td>
</tr>
<tr>
<td style="text-align: center;"><code>(2,)</code></td>
<td style="text-align: center;"><code>pressure: [100, 200]</code></td>
<td style="text-align: center;">True</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;"><code>pscale</code></td>
<td style="text-align: center;">None</td>
</tr>
<tr>
<td style="text-align: center;"><code>(3,)</code></td>
<td style="text-align: center;"><code>pressure: [100, 100, 100]</code></td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">all except <code>pscale</code></td>
<td style="text-align: center;">px=py=pz</td>
</tr>
<tr>
<td style="text-align: center;"><code>(1,3)</code></td>
<td style="text-align: center;"><code>pressure: [[100, 100, 100]]</code></td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">all except <code>pscale</code></td>
<td style="text-align: center;">px=py=pz</td>
</tr>
<tr>
<td style="text-align: center;"><code>(2,3)</code></td>
<td style="text-align: center;"><code>pressure: [[100, 100, 100], [200, 200, 200]]</code>
→˓</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;">False</td>
<td style="text-align: center;"><code>pscale</code></td>
<td style="text-align: center;">px=py=pz</td>
</tr>
</tbody>
</table>

`lattice`

type: string or list of strings
default: None
example:
```
lattice: FCC
lattice: [FCC, LQD]
lattice: [FCC, conf.data]
```

Lattice to be used for the calculations. The `lattice` option can use either LAMMPS for␣

(continues on next page)

1.2. Documentation 11

calphy

(continued from previous page)

→˓creation of input structure or use an input file in the LAMMPS data format. To use␣
→˓LAMMPS to create the structure, the keyword specified should be from the following:␣
→˓`BCC`, `FCC`, `HCP`, `DIA`, `SC` and `LQD`. LAMMPS lattice creation can **only be used␣
→˓for single species**. If `LQD` is specified, a solid structure will be first created␣
→˓and melted within the MD run. Alternatively, a LAMMPS data file can be specified which␣
→˓contains the configuration.

`reference_phase`

type: string or list of strings
default: None
example:
```
state: solid
state: [solid, liquid]
```

The protocol to be used for the calculation. The `reference_phase` input is closely␣
→˓related to the `lattice` command. It should be of the same length as the `lattice`␣
→˓input. For each of the lattice specified, `reference_phase` command specifies which␣
→˓reference state to use.

`lattice_constant`

type: float or list of floats
default: Experimental lattice constant
example:
```
lattice_constant: 3.68
lattice_constant: [3.68, 5.43]
```

Lattice constant for input structures. Lattice constant values to be used for initial␣
→˓structure creation. Only required if the structure is created through LAMMPS. If not␣
→˓specified, the experimental lattice constant will be used.

`repeat`

type: list of ints of length 3
default: [1, 1, 1]
example:
```
repeat: [3,3,3]
```

`repeat` command specifies the number of unit cells required in each x, y and z␣

(continues on next page)

12 Chapter 1. Documentation

calphy

(continued from previous page)

→˓directions. This is only used if `lattice` command uses one of the LAMMPS structure␣
→˓keywords.

`n_iterations`

type: int
example:
```
n_iterations: 3
```

The number of backward and forward integrations to be carried out in all modes. If more␣
→˓than one integration cycle is used, the errors can also be evaluated.

`temperature_high`

type: float
default: 2*temperature
example:
```
temperature_high: 1600
```

The temperature used to melt a solid structure to create a liquid. If `reference_phase`␣
→˓is chosen as `liquid`, calphy performs a melting cycle to create an equilibrated␣
→˓liquid structure. calphy starts from the given input structure, and heats it using 2␣
→˓times the highest temperature provided in the `temperature` option. If the structure␣
→˓is not melted, the temperature is increased progressively. `temperature_high` keyword␣
→˓can be used to set the temperature to overheat the structure and melt it.

`npt`

type: bool
default: True
example:
```
npt: True
```

`npt` determines if calculations are carried out in the NPT ensemble. This option is␣
→˓used with modes `alchemy`, `ts` and `mts`. The effect is described below:

- for mode `ts` and `mts`: the reversible scaling approach is carried out in NPT if␣
→˓`npt` is True, otherwise the `NVT` ensemble is used.

- for mode `alchemy`: If `npt` is False, the NVT ensemble is used, meaning that the␣

(continues on next page)

1.2. Documentation 13

calphy

(continued from previous page)

→˓calculated work during alchemical transformation is calculated on the equilibrated␣
→˓volume of the first pair style.

`pair_style`

type: string or list of strings
example:
```
pair_style: eam/alloy
pair_style: [eam/alloy, eam/alloy]
pair_style: eam/fs
pair_style: pace
```

The [pair style](https://lammps.sandia.gov/doc/pair_style.html) command for LAMMPS. All␣
→˓styles supported in LAMMPS can be used with calphy. Except for mode `alchemy`, only␣
→˓the first value in the list will be used. For mode `alchemy`, there should be two pair␣
→˓styles specified, and the alchemical transformation is carried out between the two.

`pair_coeff`

type: string or list of strings
default: None
example:
```
pair_coeff: "* * Cu_EAM/Cu01.eam.alloy Cu"
pair_coeff: ["* * Cu_EAM/Cu01.eam.alloy Cu", "* * Cu_EAM/Cu02.eam.alloy Cu"]
pair_coeff: "* * CuZr_EAM/CuZr.eam.fs Cu Zr"
```

The [pair coeff](https://lammps.sandia.gov/doc/pair_coeff.html) command for LAMMPS. It␣
→˓should be the same length as `pair_style`. Except for mode `alchemy`, only the first␣
→˓value in the list will be used. For mode `alchemy`, there should be two pair styles␣
→˓specified, and the alchemical transformation is carried out between the two.

`potential_file`

type: string
default: None
example:
```
pair_coeff: "/home/calc/potential.inp"
```

If specified, the `pair_style` and `pair_coeff` commands are not used, but rather the␣
→˓potential is read in from the provided input file using `include` command in LAMMPS.␣

(continues on next page)

14 Chapter 1. Documentation

calphy

(continued from previous page)

→˓This allows the use of more complex or multiple potential files. Due to the `hybrid/
→˓scaled` styles employed in calphy, **this option only works with mode `fe` and␣
→˓`reference_phase` solid.**

`n_equilibration_steps`

type: int
default: 25000
example:
```
n_equilibration_steps: 10000
```

The number of time steps for equilibrating the system.

`n_switching_steps`

type: int or list of ints
default: 50000
example:
```
n_switching_steps: 10000
n_switching_steps: [10000, 20000]
```

The number of switching steps. If a list of two integers is provided, the first value is␣
→˓used for mode `fe` while the second value will be used for all other modes.

`n_print_steps`

type: int
default: 0
example:
```
n_print_steps: 100
```

Record MD trajectory during temperature sweep runs in the given interval of time steps.␣
→˓Default 0, trajectories are never recorded.

`spring_constants`

type: list of floats

(continues on next page)

1.2. Documentation 15

calphy

(continued from previous page)

default: None
example:
```
spring_constants: 1.2
spring_constants: [1.2, 1.3]
```

Spring constants for Einstein crystal. If specified, the automatic calculation is not␣
→˓performed. Should be equal to the number of species in the system.

`equilibration_control`

type: str
default: None
example:
```
equilibration_control: berendsen
equilibration_control: nose-hoover
```

The barostat and thermostat combination to be used for the equilibration stage. By␣
→˓default, Berendsen will be used for solid reference and Nose-Hoover will be used for␣
→˓liquid. The damping parameters can be tuned using the [nose_hoover](#nose_hoover)␣
→˓block or the [berendsen](#berendsen) block. Used only for equilibration stage.

`melting_cycle`

type: bool
default: True
example:
```
melting_cycle: True
melting_cycle: False
```

If True, a melting cycle is carried out to melt the given input structure. Only used if␣
→˓the `reference_phase` is `"liquid"`.

`md` block

MD block consists of the various options required for the MD runs. An example block is␣
→˓given below and the keys are discussed.

```

(continues on next page)

16 Chapter 1. Documentation



calphy

(continued from previous page)

md:
timestep: 0.001
thermostat_damping: 0.1
barostat_damping: 0.1

```

`timestep`

type: float
default: 0.001
example:
```
timestep: 0.001
```

The timestep for MD in picoseconds.

`thermostat_damping`

type: float
default: 0.1
example:
```
thermostat_damping: 0.1
```

The thermostat damping constant for MD. For damping during equilibration stage see␣
→˓[`equilibration_control`](#equilibration_control).

`barostat_damping`

type: float
default: 0.1
example:
```
barostat_damping: 0.1
```

Pressure damping for MD. For damping during equilibration stage see [`equilibration_
→˓control`](#equilibration_control).

`n_small_steps`

type: int

(continues on next page)

1.2. Documentation 17

calphy

(continued from previous page)

default: 10000
example:
```
n_small_steps: 10000
```

The number of time steps for equilibration cycles to calculate spring constant and␣
→˓average volume.

`n_every_steps`

type: int
default: 10
example:
```
n_every_steps: 100
```

Keywords to tune how often average values are recorded in LAMMPS. Please see␣
→˓[here](https://docs.lammps.org/fix_ave_time.html) for more details.

`n_repeat_steps`

type: int
default: 10
example:
```
n_repeat_steps: 10
```

Keywords to tune how often average values are recorded in LAMMPS. Please see␣
→˓[here](https://docs.lammps.org/fix_ave_time.html) for more details.

`n_cycles`

type: int
default: 100
example:
```
n_cycles: 100
```

Number of cycles to try converging the pressure of the system. If the pressure is not␣
→˓converged after `n_cycles`, an error will be raised. In each `n_cycle`, `n_small_
→˓steps` MD steps will be run.

(continues on next page)

18 Chapter 1. Documentation

calphy

(continued from previous page)

`queue` block

This block consists of the options for specifying the scheduler for carrying out the␣
→˓calculations. An example block is given below-

```
queue:
scheduler: local
cores: 2
jobname: ti
walltime: "23:50:00"
queuename: shorttime
memory: 3GB
modules:
- anaconda/4

commands:
- conda activate env

```

`scheduler`

type: string
example:
```
scheduler: slurm
```

The scheduler to be used for the job. Can be `local`, `slurm` or `sge`. The code has␣
→˓been tested only on local and slurm.

`cores`

type: int
example:
```
cores: 4
```

The number of cores to be used for the job.

`jobname`

type: string

(continues on next page)

1.2. Documentation 19

calphy

(continued from previous page)

example:
```
jobname: cu
```

Name of the job. Not used for `local`.

`walltime`

type: string
example:
```
walltime: "23:50:00"
```

Walltime for the job. Not used for `local`.

`queuename`

type: string
example:
```
queuename: "shorttime"
```

Name of the queue. Not used for `local`.

`memory`

type: string
example:
```
memory: 3GB
```

Memory to be used per core. Not used for `local`.

`commands`

type: list of strings
example:
```
command:
- source .bashrc

(continues on next page)

20 Chapter 1. Documentation



calphy

(continued from previous page)

- conda activate ace
- module load lammps
```

Command that will be run **before** the actual calculations are carried out. This␣
→˓section can be used to specify commands that need to be run before the actual␣
→˓calculation. If the calculations are run within a conda environment, the activate␣
→˓command for conda should be specified here. If additional modules need to be loaded,␣
→˓that can also be specified here.

`modules`

type: list of strings
example:
```
modules:
- anaconda
- lammps

```

List of modules to be loaded before running the calculations. The given module names␣
→˓will be prefixed by `module load`.

`options`

type: string
example:
```
options:
- memory: 3GB

```

Extra options to be added to the submission script.

`tolerance` block

This block helps to tune the internal convergence parameters that `calphy` uses.␣
→˓Generally, tuning these parameters are not required.

```
tolerance:

spring_constant: 0.01
solid_fraction: 0.7
liquid_fraction: 0.05
pressure: 0.5

(continues on next page)

1.2. Documentation 21



calphy

(continued from previous page)

```

`spring_constant`

type: float
default: 0.01
example:
```
spring_constant: 0.01
```

tolerance for the convergence of spring constant calculation.

`solid_fraction`

type: float
default: 0.7
example:
```
solid_fraction: 0.7
```

The minimum amount of solid particles that should be there in solid.

`liquid_fraction`

type: float
default: 0.05
example:
```
liquid_fraction: 0.05
```

Maximum fraction of solid atoms allowed in liquid after melting.

`pressure`

type: float
default: 0.5
example:
```
pressure: 0.5
```

(continues on next page)

22 Chapter 1. Documentation

calphy

(continued from previous page)

tolerance for the convergence of pressure.

`melting_temperature` block

This block contains keywords that are used only for the mode `melting_temperature`.

```
melting_temperature:

step: 200
attempts: 5

```

`step`

type: int
example:
```
step: 200
```

Temperature interval for search of melting temperature. Only used if mode is `melting_
→˓temperature`.

`attempts`

type: int
example:
```
attempts: 5
```

The number of maximum attempts to try find the melting temperature in a automated manner.
→˓ Only used if mode is `melting_temperature`.

`nose_hoover` block

This block contains keywords that are used only for the equilibration stage if␣
→˓[`equilibration_control`](#equilibration_control) is `nose_hoover`.

```
nose_hoover:

(continues on next page)

1.2. Documentation 23



calphy

(continued from previous page)

thermostat_damping: 0.1
barostat_damping: 0.1

```

`thermostat_damping`

type: float
default: 0.1
example:
```
thermostat_damping: 0.1
```

The thermostat damping constant for equilibration MD.

`barostat_damping`

type: float
default: 0.1
example:
```
barostat_damping: 0.1
```

Pressure damping for equilibration MD.

`berendsen` block

This block contains keywords that are used only for the equilibration stage if␣
→˓[`equilibration_control`](#equilibration_control) is `berendsen`.

```
berendsen:

thermostat_damping: 100.0
barostat_damping: 100.0

```

`thermostat_damping`

type: float
default: 100.0
example:
```
thermostat_damping: 100.0

(continues on next page)

24 Chapter 1. Documentation



calphy

(continued from previous page)

```

The thermostat damping constant for equilibration MD.

`barostat_damping`

type: float
default: 100.0
example:
```
barostat_damping: 100.0
```

Pressure damping for equilibration MD.

1.2.2 Running calphy

After the calculations are specified in the input file, calphy can be run by:

calphy -i inputfilename

The calphy command will wrap each calculation defined in the calculations block into a script and submit it based
on the scheduler specified.

Alternatively, if you want to run a calculation directly from the terminal, the calphy_kernel command can be used.

calphy_kernel -i input.yaml -k 0

An extra argument -k or --kernel is required, which takes an integer argument. This argument refers to the which
calculation needs to be run from the input file. For example if the calculationsblock of the input file is as follows:

calculations:
- mode: ts
temperature: [1200, 1400]
pressure: [0]
lattice: [FCC, LQD]
repeat: [5, 5, 5]
reference_phase: [solid, liquid]
n_iterations: 1

Specify -k 0 will run a calculation block equivalent to:

- mode: ts
temperature: [1200, 1400]
pressure: [0]
lattice: [FCC]
repeat: [5, 5, 5]

(continues on next page)

1.2. Documentation 25

calphy

(continued from previous page)

reference_phase: [solid]
n_iterations: 1

and -k 1 will run:

- mode: ts
temperature: [1200, 1400]
pressure: [0]
lattice: [LQD]
repeat: [5, 5, 5]
reference_phase: [liquid]
n_iterations: 1

1.2.3 Running calphy on computing clusters

The easiest way to run calphy on computing clusters is by using queue block in the input file. The queue block looks
like this:

queue:
scheduler: slurm
cores: 20
jobname: fec
walltime: "23:50:00"
queuename: shorttime
memory: 3GB
commands:
- source ~/.bashrc
- conda activate calphy

The default scheduler is local, which means that the calculations are run on the local machine. Instead slurm or sge
can be specified to run on computing clusters. The number of cores, walltime, queue name etc can be set during the
respective keywords. Note that if you are using a conda environment, it needs to be activated. This can be done using
the commands argument. Anything listed within the commands argument is copied directly to the submission script.

Adding a new scheduler

In the current version only slurm and sge schedulers are supported. There are two ways in which a new scheduler can
be added, they are described below:

Editing scheduler.py

The scheduler are implemented in calphy within calphy/scheduler.py file. An existing class can be copied and
modified to support the new submission script.

26 Chapter 1. Documentation

calphy

Adding calphy to a submission script

An easier method would be to add calphy manually within a submission script. calphy offers a calphy_kernel
command line interface which can be used for direct submission. The above queue block can be translated to an
equivalent submission script as follows:

#!/bin/bash
#SBATCH --job-name=fec
#SBATCH --time=23:50:00
#SBATCH --partition=shorttime
#SBATCH --ntasks=20
#SBATCH --mem-per-cpu=3GB

source ~/.bashrc
conda activate calphy

calphy_kernel -i input.yaml -k 0

Note that calphy_kernel is called instead of calphy. Additionally an extra argument -k or --kernel is required,
which takes an integer argument. This argument refers to the which calculation needs to be run from the input file. For
example if the calculationsblock of the input file is as follows:

calculations:
- mode: ts
temperature: [1200, 1400]
pressure: [0]
lattice: [FCC, LQD]
repeat: [5, 5, 5]
reference_phase: [solid, liquid]
n_iterations: 1

Specify -k 0 will run a calculation block equivalent to:

- mode: ts
temperature: [1200, 1400]
pressure: [0]
lattice: [FCC]
repeat: [5, 5, 5]
reference_phase: [solid]
n_iterations: 1

and -k 1 will run:

- mode: ts
temperature: [1200, 1400]
pressure: [0]
lattice: [LQD]
repeat: [5, 5, 5]
reference_phase: [liquid]
n_iterations: 1

1.2. Documentation 27

calphy

28 Chapter 1. Documentation

CHAPTER

TWO

EXAMPLES

2.1 Examples

2.1.1 Example 01: Calculation of free energy

In this example, a simple calculation of the Helmholtz free energy 𝐹 (𝑁𝑉 𝑇) is illustrated. We use a Fe BCC structure
at 100K.

The EAM potential that will be used: Meyer, R, and P Entel. “Martensite-austenite transition and phonon dispersion
curves of Fe1xNix studied by molecular-dynamics simulations.” Phys. Rev. B 57, 5140.

The reference data is from: Freitas, Rodrigo, Mark Asta, and Maurice de Koning. “Nonequilibrium Free-Energy
Calculation of Solids Using LAMMPS.” Computational Materials Science 112 (February 2016): 333–41.

Solid free energy

The input file for calculation of solid BCC Fe at 100 K is provided in the folder. A detailed description of the input file
is available here. The calculation can be started from the terminal using:

calphy -i input.yaml

This should give a message:

Total number of 1 calculations found

calphy is running in the background executing the calculation. A new folder called fe-BCC-100-0, and files called
fe-BCC-100-0.sub.err and fe-BCC-100-0.sub.out will also be created.

After the calculation is over, the results are available in the report.yaml file. The file is shown below:

average:
spring_constant: '3.32'
vol/atom: 11.994539429692749

input:
concentration: '1'
element: Fe
lattice: bcc
pressure: 0.0
temperature: 100

results:
error: 0.0

(continues on next page)

29

https://doi.org/10.1103/PhysRevB.57.5140
https://doi.org/10.1103/PhysRevB.57.5140
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1016/j.commatsci.2015.10.050
input.yaml

calphy

(continued from previous page)

free_energy: -4.263568357143783
pv: 0.0
reference_system: 0.015029873513789175
work: -4.278598230657573

The calculated free energy is −4.2636 eV/atom, the value reported in the publication is −4.2631147(1) eV/atom. The
calculated value can be further improved by increasing the system size, and by increasing the switching time.

2.1.2 Example 02: Phase transformation in Fe

In this example, we will make use of the temperature sweep algorithm in calphy to calculate the transformation
temperature for BCC to FCC transition in Fe.

The EAM potential that will be used: Meyer, R, and P Entel. “Martensite-austenite transition and phonon dispersion
curves of Fe1xNix studied by molecular-dynamics simulations.” Phys. Rev. B 57, 5140.

The reference data is from: Freitas, Rodrigo, Mark Asta, and Maurice de Koning. “Nonequilibrium Free-Energy
Calculation of Solids Using LAMMPS.” Computational Materials Science 112 (February 2016): 333–41.

The input file is provided in the folder. The calculation can be started from the terminal using:

calphy -i input.yaml

In the input file, the calculations block is as shown below:

- mode: ts
temperature: [100, 1400]
pressure: [0]
lattice: [BCC]
repeat: [5, 5, 5]
reference_phase: [solid]
n_iterations: 1
pair_style: eam
pair_coeff: "* * ../potentials/Fe.eam"
n_equilibration_steps: 10000
n_switching_steps: 25000

- mode: ts
temperature: [100, 1400]
pressure: [0]
lattice: [FCC]
repeat: [5, 5, 5]
reference_phase: [solid]
n_iterations: 1
lattice_constant: [6.00]
pair_style: eam
pair_coeff: "* * ../potentials/Fe.eam"
n_equilibration_steps: 10000
n_switching_steps: 25000

The mode is listed as ts, which stands for temperature sweep. The sweep starts from the first value in the temperature
option, which is 100 K. The free energy is integrated until 1400 K, which is the second value listed. Furthermore, there
are also two calculation blocks. You can see that the lattice mentioned is different; one set is for BCC structure,
while the other is FCC.

30 Chapter 2. Examples

https://doi.org/10.1103/PhysRevB.57.5140
https://doi.org/10.1103/PhysRevB.57.5140
https://doi.org/10.1016/j.commatsci.2015.10.050
https://doi.org/10.1016/j.commatsci.2015.10.050
input.yaml

calphy

Once the calculation is over, there will a file called temperature_sweep.dat in each of the folders. This file indicates
the variation of free energy with the temperature. We can read in the files and calculate the transition temperature as
follows:

[1]: import numpy as np
import matplotlib.pyplot as plt

[2]: bt, bfe, bferr = np.loadtxt("ts-BCC-100-0/temperature_sweep.dat", unpack=True)
ft, ffe, fferr = np.loadtxt("ts-FCC-100-0/temperature_sweep.dat", unpack=True)

args = np.argsort(np.abs(bfe-ffe))
print(bt[args[0]], "K")

508.07011498303046 K

[3]: plt.plot(bt, bfe, color="#E53935", label="bcc")
plt.plot(ft, ffe, color="#0097A7", label="fcc")
plt.xlabel("Temperature (K)", fontsize=12)
plt.ylabel("F (ev/atom)", fontsize=12)
plt.legend()
plt.savefig("fe_transition.png", dpi=300, bbox_inches="tight")

nbsphinx-code-borderwhite

[]:

2.1.3 Example 03: Manual calculation of Cu melting temperature

In this example, the melting temperature for Cu is calculated using a combination of free energy calculation and tem-
perature sweep.

The EAM potential we will use is : Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress.
“Structural Stability and Lattice Defects in Copper: Ab Initio , Tight-Binding, and Embedded-Atom Calculations.”
Physical Review B 63, no. 22 (May 21, 2001): 224106.

The calculation block gives the input conditions at which the calculation is carried out. First of all, the mode is ts, a
temperature sweep over the temperature range given in the temperature keyword will be done. FCC and LQD lattice
are chosen, the former for solid and the latter for liquid. The potential file is specified in pair_coeff command
in the md block.

2.1. Examples 31

https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106

calphy

The calculation can be run by,

calphy -i input.yaml

Once submitted, it should give a message Total number of 2 calculations found. It will also create a set of
folders with the names mode-lattice-temperature-pressure. In this case, there will be ts-FCC-1200-0 and
ts-LQD-1200-0. If there are any errors in the calculation, it will be recoreded in ts-FCC-1200-0.sub.err and
ts-LQD-1200-0.sub.err. Once the calculation starts, a log file called tint.log will be created in the aforemen-
tioned folders. For example, the tint.log file in ts-FCC-1200-0 is shown below:

2021-07-08 15:12:02,873 calphy.helpers INFO At count 1 mean pressure is -5.337803␣
→˓with 12.625936 vol/atom
2021-07-08 15:12:09,592 calphy.helpers INFO At count 2 mean pressure is -5.977502␣
→˓with 12.625639 vol/atom
2021-07-08 15:12:15,790 calphy.helpers INFO At count 3 mean pressure is -6.557647␣
→˓with 12.623906 vol/atom
2021-07-08 15:12:22,059 calphy.helpers INFO At count 4 mean pressure is -2.755662␣
→˓with 12.624017 vol/atom
2021-07-08 15:12:28,157 calphy.helpers INFO At count 5 mean pressure is -1.306381␣
→˓with 12.625061 vol/atom
2021-07-08 15:12:34,405 calphy.helpers INFO At count 6 mean pressure is 0.718567␣
→˓with 12.625150 vol/atom
2021-07-08 15:12:40,595 calphy.helpers INFO At count 7 mean pressure is 2.185729␣
→˓with 12.625295 vol/atom
2021-07-08 15:12:47,020 calphy.helpers INFO At count 8 mean pressure is 2.162312␣
→˓with 12.625414 vol/atom
2021-07-08 15:12:53,323 calphy.helpers INFO At count 9 mean pressure is 1.137092␣
→˓with 12.624953 vol/atom
2021-07-08 15:12:59,692 calphy.helpers INFO At count 10 mean pressure is 0.377612␣
→˓with 12.625385 vol/atom
2021-07-08 15:12:59,693 calphy.helpers INFO finalized vol/atom 12.625385 at pressure␣
→˓0.377612
2021-07-08 15:12:59,693 calphy.helpers INFO Avg box dimensions x: 18.483000, y: 18.
→˓483000, z:18.483000
2021-07-08 15:13:05,878 calphy.helpers INFO At count 1 mean k is 1.413201 std is 0.
→˓072135
2021-07-08 15:13:12,088 calphy.helpers INFO At count 2 mean k is 1.398951 std is 0.
→˓065801
2021-07-08 15:13:12,090 calphy.helpers INFO finalized sprint constants
2021-07-08 15:13:12,090 calphy.helpers INFO [1.4]

The file gives some information about the preparation stage. It can be seen that at loop 10, the pressure is converged
and very close to the 0 value we specified in the input file. After the pressure is converged, box dimensions are fixed,
and the spring constants for the Einstein crystal are calculated.

The ts mode consists of two stages, the first step is the calculation of free energy at 1200 K, followed by a sweep until
1400 K. The results of the free energy calculation is recorded in report.yaml file. The file is shown below:

average:
spring_constant: '1.4'
vol/atom: 12.625384980886036

input:
concentration: '1'
element: Cu

(continues on next page)

32 Chapter 2. Examples

calphy

(continued from previous page)

lattice: fcc
pressure: 0.0
temperature: 1200

results:
error: 0.0
free_energy: -4.071606995367944
pv: 0.0
reference_system: -0.7401785806445611
work: -3.331428414723382

In the file, the average and input quantities are recorded. The more interesting block is the results block. Here the
calculated free energy value in eV/atom is given in the free_energy key. The free energy of the reference system
is given in reference_system and the work done in switching is under work. The error key gives the error in
the calculation. In this case, its 0 as we ran only a single loop (see nsims). The report.yaml file for liquid looks
somewhat similar.

average:
density: 0.075597559457131
vol/atom: 13.227983329718013

input:
concentration: '1'
element: Cu
lattice: fcc
pressure: 0.0
temperature: 1200

results:
error: 0.0
free_energy: -4.058226884054426
pv: 0.0
reference_system: 0.6852066332000204
work: 4.743433517254447

The main difference here is that under the average block, the density is reported instead of spring_constant.

The variation of the free energy within the temperature range is given in the temperature_sweep.dat files instead
of each of the folders. The file contains three columns, temperature, free energy and the error in free energy. The files
are read in and plotted below.

[1]: import numpy as np
import matplotlib.pyplot as plt

[3]: st, sfe, sferr = np.loadtxt("ts-FCC-1200-0/temperature_sweep.dat", unpack=True)
lt, lfe, lferr = np.loadtxt("ts-LQD-1200-0/temperature_sweep.dat", unpack=True)

[4]: plt.plot(st, sfe, color="#E53935", label="solid")
plt.plot(lt, lfe, color="#0097A7", label="liquid")
plt.xlabel("Temperature (K)", fontsize=12)
plt.ylabel("F (ev/atom)", fontsize=12)
plt.legend()
plt.savefig("tm.png", dpi=300, bbox_inches="tight")

2.1. Examples 33

calphy

nbsphinx-code-borderwhite

From the plot, at temperatures below 1300 K, solid is the more stable structure with lower free energy. Around 1340
K, liquid becomes the more stable structure. We can find the temperature at which the free energy of both phases are
equal, which is the melting temperature.

[5]: args = np.argsort(np.abs(sfe-lfe))
print(st[args[0]], "K")

1344.3095672974282 K

2.1.4 Example 04: Automated calculation of melting temperature

In Example 03, we calculated the melting temperature for Cu. The same can be done in a fully automated way using
Calphy.

The EAM potential we will use is : Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress.
“Structural Stability and Lattice Defects in Copper: Ab Initio , Tight-Binding, and Embedded-Atom Calculations.”
Physical Review B 63, no. 22 (May 21, 2001): 224106.

The calculation block gives the input conditions at which the calculation is carried out. First of all, the mode is
melting_temperature. This mode is special, and needs much less input information than the other common modes.
For example, options such as lattice, state and temperature are (generally; see below for specific cases) not
needed.

The input file in this case is shown below:

element: Cu
mass: 63.546
calculations:
- mode: melting_temperature
pressure: [0]
repeat: [5, 5, 5]
nsims: 1

md:
pair_style: eam/alloy
pair_coeff: "* * ../potentials/Cu01.eam.alloy Cu"

(continues on next page)

34 Chapter 2. Examples

https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106

calphy

(continued from previous page)

timestep: 0.001
nsmall: 10000
tdamp: 0.1
pdamp: 0.1
te: 10000
ts: 15000

queue:
scheduler: local
cores: 4
commands:
- conda activate calphy

Once the input file is set up, the calculation can be run using:

calphy -i input.yaml

A log file called calphy.log is also be produced. The log file contains a lot of information about the calculation.
Here the most important ones are discussed. The important log file contents are prefixed with STATE. On running grep
STATE calphy.log, the following output is produced.

calphy.helpers INFO STATE: Temperature range of 1156.600000-1556.600000 K
calphy.helpers INFO STATE: Tm = 1340.39 K +/- 0.00 K, Exp. Tm = 1356.60 K

The calculated melting temperature for this interatomic potential is 1340 K.

How does it work?

A flowchart of the automated melting temperature calculation is shown below:

2.1. Examples 35

calphy

36 Chapter 2. Examples

calphy

FAQs

• How can I tune the initial guess temperature?
The initial guess temperature can be tuned using the keyword tguess in the md block.

• How can I tune the width of the temperature range?
The width of the temperature scan range can be tuned using the keyword dtemp in the md block.

• What if the system undergoes a solid-solid phase transition before melting?
The lattice that calphy automatically chooses for the solid is the ground state. For some elements, for example
Ti, a solid-solid phase transition occurs before melting. HCP Ti transforms to BCC Ti and then to liquid.
Therefore to use the automated method, the solid lattice has to be specified using the lattice keyword.

• How can I calculate melting temperature at non zero pressure?
The required pressure can be specified using the pressure keyword. Note that specifying tguess could help
speed up the calculation.

2.1.5 Example 04: Pressure-temperature phase diagram of Cu

In this example, the pressure-temperature phase diagram of Cu will be calculated.

The EAM potential we will use is : Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress.
“Structural Stability and Lattice Defects in Copper: Ab Initio , Tight-Binding, and Embedded-Atom Calculations.”
Physical Review B 63, no. 22 (May 21, 2001): 224106.

The input file is provided in the folder. The calculation is very similar to the calculation of melting temperature.
However, we calculate the melting temperature for various pressures to arrive at the phase-diagram.

There are five input files in the folder, from input1.yaml to input5.yaml. Each file contains the calculations for a
single pressure. You can also add all of the calculations in a single file under the calculations block. It is split here
into five files for the easiness of running the calculations on relatively small machines.

The calculation can be run by:

calphy -i input1.yaml

and so on until input5.yaml. After the calculations are over, we can read in the results and compare it.

[3]: import numpy as np
import matplotlib.pyplot as plt

The starting temperatures and pressures for our calculations:

[4]: temp = [1600, 2700, 3700, 4600]
press = [100000, 500000, 1000000, 1500000]

Now a small loop which goes over each folder and calculates the melting temperature value:

[5]: tms = []

for t, p in zip(temp, press):
sfile = "ts-FCC-%d-%d/temperature_sweep.dat"%(t, p)
lfile = "ts-LQD-%d-%d/temperature_sweep.dat"%(t, p)
t, f, fe = np.loadtxt(sfile, unpack=True)
t, l, fe = np.loadtxt(lfile, unpack=True)
args = np.argsort(np.abs(f-l))

(continues on next page)

2.1. Examples 37

https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106

calphy

(continued from previous page)

tms.append(t[args[0]])

To compare our results, we will use a Simon equation, given by,

𝑇𝑚(𝑃) = 𝑇𝑚0(𝑃/𝑎+ 1)𝑏

We will use reported values for parameters 𝑇𝑚0, 𝑎 and 𝑏 from two different publications:

• Wang, Shuaichuang, Gongmu Zhang, Haifeng Liu, and Haifeng Song. “Modified Z Method to Calculate Melting
Curve by Molecular Dynamics.” The Journal of Chemical Physics 138, no. 13 (April 7, 2013): 134101.

[6]: def get_tm(press):
tm = 1315*(press/15.84 + 1)**0.543
return tm

• An, Qi, Sheng-Nian Luo, Li-Bo Han, Lianqing Zheng, and Oliver Tschauner. “Melting of Cu under Hydrostatic
and Shock Wave Loading to High Pressures.” Journal of Physics: Condensed Matter 20, no. 9 (March 5, 2008):
095220.

[8]: def get_tm2(press):
tm = 1325*(press/15.37 + 1)**0.53
return tm

An array for pressures over which the two equations will be fit, and values of the two expressions are calculated.

[9]: pfit = np.arange(0, 151, 1)
tma = get_tm(pfit)
tmb = get_tm2(pfit)

[11]: plt.plot(pfit, tma, ls="dashed", label="Wang et al.", color="#03A9F4")
plt.plot(pfit, tmb, ls="dashed", label="An et. al.", color="#E65100")
plt.plot(np.array(press)/10000, tms, 'o', color="#1A237E")
plt.xlabel("Pressure (GPa)", fontsize=12)
plt.ylabel(r"T_m (K)", fontsize=12)
plt.legend()
plt.savefig("tp-diagram.png", dpi=300, bbox_inches="tight")

nbsphinx-code-borderwhite

38 Chapter 2. Examples

https://doi.org/10.1063/1.4798225
https://doi.org/10.1063/1.4798225
https://doi.org/10.1088/0953-8984/20/9/095220
https://doi.org/10.1088/0953-8984/20/9/095220
https://doi.org/10.1088/0953-8984/20/9/095220

calphy

2.1.6 Example 06: Running calphy from jupyter notebooks

In this example, calphy will be used as a library to run Example 01 directly from a jupyter notebook. Please check
example 01 before completing this example. We start by import a function to read the input file.

[1]: from calphy.input import read_inputfile

[2]: options = read_inputfile("input.yaml")

We can check the keys of the options dictionary.

[3]: options.keys()

[3]: dict_keys(['calculations', 'md', 'queue', 'conv', 'element', 'mass', 'nelements'])

The individual methods that are required to run the calculation can be imported from the queuekernel module.

[4]: import calphy.queuekernel as cq

First, we set up a class which prepares everything for the calculation. It takes options as the first argument, followed
by an integer argument. The second argument indicates which calculation from the calculation block is run.

[5]: job = cq.setup_calculation(options, 0)

[6]: job

[6]: solid system with T=100.000000, P=0.000000 in bcc lattice for mode fe

The specifics of the calculation can be obtained by,

[7]: job.calc

[7]: {'mode': 'fe',
'temperature': 100,
'pressure': 0,
'lattice': 'BCC',
'state': 'solid',
'temperature_stop': 100,
'nelements': 1,
'element': ['Fe'],
'lattice_constant': 2.8842,
'iso': True,
'fix_lattice': False,
'repeat': [5, 5, 5],
'nsims': 1,
'thigh': 200.0,
'directory': 'fe-BCC-100-0'}

These properties can also be accessed individually.

[9]: job.t, job.p, job.l

[9]: (100, 0, 'bcc')

Now finally the calculation can be run

2.1. Examples 39

calphy

[8]: job = cq.run_calculation(job)

The results can be obtained through the report variable

[10]: job.report

[10]: {'input': {'temperature': 100,
'pressure': 0.0,
'lattice': 'bcc',
'element': 'Fe',
'concentration': '1'},
'average': {'vol/atom': 11.994752673986264, 'spring_constant': '3.35'},
'results': {'free_energy': -4.263447380763835,
'error': 0.0,
'reference_system': 0.01514568505240216,
'work': -4.278593065816237,
'pv': 0.0}}

or individually as class attributes

[11]: job.fe, job.w, job.pv

[11]: (-4.263447380763835, -4.278593065816237, 0)

If more than one calculation is present, they should be run individually. For example, we use the input2.yaml file.

[13]: options = read_inputfile("input2.yaml")

This input file has two structures: BCC and liquid. We can check the list of calculations

[17]: len(options["calculations"])

[17]: 2

If you want to run the second calculation in the list, we have to set up the job as follows.

[]: job = cq.setup_calculation(options, 1)

2.1.7 Example 07: Upsampling calculations

In this example, upsampling calculations which can be used to switch a system between two different interatomic
potentials is illustrated.

The major change in the input file is that both pair_style and pair_coeff keywords have two arguments. These
are the two potentials between which the transformation will be carried out.

The first potential is a Finnis-Sinclair (FS) potential for copper:

M.I. Mendelev, M.J. Kramer, C.A. Becker, and M. Asta (2008), “Analysis of semi-empirical interatomic potentials
appropriate for simulation of crystalline and liquid Al and Cu”, Philosophical Magazine, 88(12), 1723-1750.

The second potential is an EAM:

Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress. “Structural Stability and Lattice
Defects in Copper: Ab Initio , Tight-Binding, and Embedded-Atom Calculations.” Physical Review B 63, no. 22 (May
21, 2001): 224106.

40 Chapter 2. Examples

https://doi.org/10.1080/14786430802206482
https://doi.org/10.1080/14786430802206482
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106

calphy

If we know the free energy of the FS potential at a given temperature, we can calculate the free energy of the EAM
through upsampling calculations. Upsampling calculations generally need only much less switching time, thus is quite
useful in the case of expensive interatomic potentials, such as machine learning potentials.

We start by calculating the free energy of the FS potential. The input file is available at pot1/input-fe.yaml. As
usual, the calculation can be run using calphy -i input-fe.yaml. We can now load the report.yaml file and
check the free energy.

[1]: import yaml
import numpy as np

[2]: with open('pot1/fe-FCC-600-0/report.yaml', 'r') as fin:
pot1 = yaml.safe_load(fin)

[3]: pot1['results']['free_energy']

[3]: -3.4389380251304913

Now we can transform FS to EAM potential (see input file above). After running the calculation, we can check the free
energy of this alchemical transformation.

[4]: with open('alchemy-FCC-600-0/report.yaml', 'r') as fin:
alchemy = yaml.safe_load(fin)

[5]: alchemy['results']['free_energy']

[5]: -0.25451608590151586

The free energy of the EAM potential, 𝐹EAM = 𝐹FS + 𝐹upsampling

[6]: pot1['results']['free_energy']+alchemy['results']['free_energy']

[6]: -3.693454111032007

We can verify this calculation by directly computing the free energy of the EAM potential. The input file is available
at pot2/input-fe.yaml.

[7]: with open('pot2/fe-FCC-600-0/report.yaml', 'r') as fin:
pot2 = yaml.safe_load(fin)

[8]: pot2['results']['free_energy']

[8]: -3.6923377327832667

We can see that the directly calculation is in meV agreement with the upsampling calculations.

2.1.8 Example 08: Temperature scaling two ways

Finding the free energy as a function of the temperature can be calculated using reversible scaling methodology (mode
ts) as discussed in previous examples.

However, calphy provides another mode tscale that can be used for the same purpose. In this example, ts and tscale
modes are compared. Before that:

• What is the difference between ``ts`` and ``tscale``?

2.1. Examples 41

calphy

ts performs reversible scaling method. Here, the simulation is performed at a constant temperature; but the
potential energy is scaled. In tscale, the temperature is directly scaled.

• Why do we need ``tscale``?
If ts mode works for the given potential, it should be used. ts, however, needs the `pair hybrid/scaled
<https://docs.lammps.org/pair_hybrid.html>`__. If this is not possible due to some restriction of the potential,
tscale can be used.

For this example, we will use the following EAM potential: Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F.
Voter, and J. D. Kress. “Structural Stability and Lattice Defects in Copper: Ab Initio , Tight-Binding, and Embedded-
Atom Calculations.” Physical Review B 63, no. 22 (May 21, 2001): 224106.

The input file is given in input.yaml. There are two sets of calculations, one with mode tscale, and another one
with mode ts that can be used for comparison.

The calculation can be run by,

calphy -i input.yaml

After the caculation is over, we can plot the free energy as a function of temperature.

[1]: import numpy as np
import matplotlib.pyplot as plt

[2]: t1, fe1, ferr1 = np.loadtxt("ts-FCC-1200-0/temperature_sweep.dat", unpack=True)
t2, fe2, ferr2 = np.loadtxt("tscale-FCC-1200-0/temperature_sweep.dat", unpack=True)

[4]: plt.plot(t1, fe1, color="#E53935", label="ts")
plt.plot(t2, fe2, color="#0097A7", ls="dashed", label="tscale")
plt.xlabel("Temperature (K)", fontsize=12)
plt.ylabel("F (ev/atom)", fontsize=12)
plt.legend()

nbsphinx-code-borderwhite

As seen from the plot above, both modes agree very well with each other. Now we can compare the error in both
methods.

42 Chapter 2. Examples

https://docs.lammps.org/pair_hybrid.html
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106

calphy

2.1.9 Example 09: Pressure scaling

In some cases, it is useful to obtain the free energy as a function of the pressure. The calphy mode pscale allows to
do this.

The EAM potential we will use is : Mishin, Y., M. J. Mehl, D. A. Papaconstantopoulos, A. F. Voter, and J. D. Kress.
“Structural Stability and Lattice Defects in Copper: Ab Initio , Tight-Binding, and Embedded-Atom Calculations.”
Physical Review B 63, no. 22 (May 21, 2001): 224106.

The input file is provided in the folder. The pressure scale input file is input2.yaml, in which we calculate the free
energy at 1200 K from 0 to 1 GPa. To compare, we do direct free energy calculations at the same temperature and
pressures of 0, 0.5 and 1 GPa. The input for this is provided in input1.yaml.

The calculation can be run by:

calphy -i input1.yaml
calphy -i input2.yaml

After the calculations are over, we can read in and analyse the results.

[1]: import numpy as np
import matplotlib.pyplot as plt

[2]: p1 = [0, 5000, 10000]
fe1 = [-4.072, -4.032, -3.993]

The above values are taken from the report.yaml files in the corresponding folders.

Note that calphy uses bar as the unit of pressure.

Now read in the pressure scaling results.

[5]: p2, fe2, ferr2 = np.loadtxt("pscale-FCC-1200-0/pressure_sweep.dat", unpack=True)

Now plot

[6]: plt.plot(p2, fe2, color="#E53935", label="pscale")
plt.plot(p1, fe1, 'o', color="#0097A7", label="direct")
plt.xlabel("Pressure (bar)", fontsize=12)
plt.ylabel("F (ev/atom)", fontsize=12)
plt.legend()

[6]: <matplotlib.legend.Legend at 0x7fe37731d0c0>

2.1. Examples 43

https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106
https://doi.org/10.1103/PhysRevB.63.224106

calphy

nbsphinx-code-borderwhite

There is excellent agreement between direct calculations and pressure scaling. Now we can also do the calculations for
a pressure range of 1-2 GPa. The input is given in input3.yaml and input4.yaml for the pressure scaling and direct
calculations respectively.

[49]: p3 = [10000, 15000, 20000]
fe3 = [-3.994, -3.955, -3.916]

[50]: p4, fe4, ferr4 = np.loadtxt("pscale-FCC-1200-10000/pressure_sweep.dat", unpack=True)

[52]: plt.plot(p4, fe4, color="#E53935", label="pscale")
plt.plot(p3, fe3, 'o', color="#0097A7", label="direct")
plt.xlabel("Pressure (bar)", fontsize=12)
plt.ylabel("F (ev/atom)", fontsize=12)
plt.legend()

[52]: <matplotlib.legend.Legend at 0x7f71512557b0>

nbsphinx-code-borderwhite

Once again, for the higher pressure interval, there is excellent agreement between the two methods.

44 Chapter 2. Examples

CHAPTER

THREE

API REFERENCE

3.1 calphy package

3.1.1 Submodules

3.1.2 calphy.alchemy module

3.1.3 calphy.helpers module

3.1.4 calphy.input module

3.1.5 calphy.integrators module

3.1.6 calphy.kernel module

3.1.7 calphy.lattice module

3.1.8 calphy.liquid module

3.1.9 calphy.queuekernel module

3.1.10 calphy.scheduler module

3.1.11 calphy.solid module

3.1.12 calphy.splines module

3.1.13 Module contents

45

calphy

46 Chapter 3. API reference

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

47

	Documentation
	Installation
	Supported operating systems
	Installation using Conda
	Installation from the repository
	Using a conda environment
	Dependencies
	Optional

	About LAMMPS for calphy

	Documentation
	calphy input file
	Running calphy
	Running calphy on computing clusters
	Adding a new scheduler
	Editing scheduler.py
	Adding calphy to a submission script

	Examples
	Examples
	Example 01: Calculation of free energy
	Solid free energy

	Example 02: Phase transformation in Fe
	Example 03: Manual calculation of Cu melting temperature
	Example 04: Automated calculation of melting temperature
	How does it work?
	FAQs

	Example 04: Pressure-temperature phase diagram of Cu
	Example 06: Running calphy from jupyter notebooks
	Example 07: Upsampling calculations
	Example 08: Temperature scaling two ways
	Example 09: Pressure scaling

	API reference
	calphy package
	Submodules
	calphy.alchemy module
	calphy.helpers module
	calphy.input module
	calphy.integrators module
	calphy.kernel module
	calphy.lattice module
	calphy.liquid module
	calphy.queuekernel module
	calphy.scheduler module
	calphy.solid module
	calphy.splines module
	Module contents

	Indices and tables

